Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lin-Hai Jing,* Shao-Jin Gu and Huan-Xia Zhang

Department of Chemistry, China West Normal University, Nanchong 637002, People's
Republic of China

Correspondence e-mail: jlhhxg@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=153 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.036$
$w R$ factor $=0.123$
Data-to-parameter ratio $=14.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1,1'-(Naphthalene-1,4-diyldicarbonyl)bis(1 H -imidazole)

The title compound, $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$, adopts a cis $\mathrm{C}=\mathrm{O}$ conformation. The two amide groups are twisted away from the attached ring by 50.46 (1) and 55.79 (1) ${ }^{\circ}$. The molecules are linked into chains of rings by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

1,4-Naphthalenedicarboxylic acid derivatives are a class of intermediates important for applications as monomers in the preparation of polymers (Fukuzumi et al., 1994; Tsukada et al., 1994). Previously, we have reported the crystal structures of $\quad N, N^{\prime}$-bis(4-nitrophenyl)naphthalene-1,4-dicarboxamide dimethylsulfoxide disolvate (Jing, Qin, Gu, Zhang \& Mao 2006), $\quad N, N^{\prime}$-bis(2-methoxyphenyl)naphthalene-1,4-dicarboxamide (Jing, Qin, Gu, Zhang \& Lei, 2006) and $N, N^{\prime}-$ bis(2-pyridyl)naphthalene-1,4-dicarboxamide (Jing, Gu \& Zhang, 2006). We now report the crystal structure of the title compound, (I).

(I)

The bond lengths and angles in (I) are all normal. The two $\mathrm{C}=\mathrm{O}$ groups are mutually cis. Probably as a result of steric effects, the substituent groups at atoms C 1 and C 4 are twisted away from the plane of the naphthalene ring system (Fig. 1). The $\mathrm{O} 1 / \mathrm{N} 1 / \mathrm{C} 1 / \mathrm{C} 11$ and $\mathrm{O} 2 / \mathrm{N} 3 / \mathrm{C} 4 / \mathrm{C} 15$ planes form dihedral angles of 50.46 (1) and $55.79(1)^{\circ}$, respectively, with the plane formed by atoms $\mathrm{C} 1-\mathrm{C} 4 / \mathrm{C} 9 / \mathrm{C} 10$. The $\mathrm{O} 1 / \mathrm{N} 1 / \mathrm{C} 1 / \mathrm{C} 11$ and $\mathrm{N} 1 /$ $\mathrm{N} 2 / \mathrm{C} 12-\mathrm{C} 14$ planes are inclined at an angle of $15.24(1)^{\circ}$, while the $\mathrm{O} 2 / \mathrm{N} 3 / \mathrm{C} 4 / \mathrm{C} 15$ and $\mathrm{N} 3 / \mathrm{N} 4 / \mathrm{C} 16-\mathrm{C} 18$ planes make a dihedral angle of $7.19(1)^{\circ}$. The molecules are linked into chains of rings along [011] by a combination of $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1).

Experimental

Naphthalene-1,4-dicarboxylic acid (2 mmol) and an excess of thionyl chloride in dioxane (20 ml) were boiled under reflux for 6 h ; the solution was distilled under reduced pressure and a yellow solid was formed. Imidazole (4 mmol) in tetrahydrofuran (20 ml) was added to the yellow solid and boiled under reflux for 1 d ; the solution was cooled to ambient emperature and filtered to remove the tetrahydrofuran. The precipitate was dissolved in dimethyl sulfoxide and
\qquad
allowed to stand for one month at ambient temperature; colourless single crystals suitable for X-ray diffraction were obtained.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$
$M_{r}=316.32$
Triclinic, $P \overline{1}$
$a=7.8010$ (3) \AA
$b=8.1890$ (3) \AA
$c=11.9799$ (6) \AA
$\alpha=75.900(1)^{\circ}$
$\beta=77.415(2)^{\circ}$
$\gamma=84.738(1)^{\circ}$
$V=723.81(5) \AA^{3}$

$$
Z=2
$$

$D_{x}=1.451 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=153$ (2) K
Block, colourless $0.57 \times 0.22 \times 0.13 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: none
7128 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.123$
$S=0.99$
3259 reflections
218 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.089 P)^{2}\right. \\
& +0.138 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.34 \mathrm{e} \mathrm{~A}^{-3} \\
& \Delta \rho_{\min }=-0.25 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.019 \text { (5) }
\end{aligned}
$$

3259 independent reflections 2823 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.012$
$\theta_{\text {max }}=27.5^{\circ}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O}^{\mathrm{i}}$	0.95	2.40	$3.349(3)$	174
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{~N} 4^{\text {ii }}$	0.95	2.56	$3.351(2)$	141

$$
\text { Symmetry codes: (i) }-x,-y,-z \text {; (ii) }-x,-y+1,-z+1 \text {. }
$$

H atoms were positioned geometricaly and treated as riding atoms, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to

Figure 1
The molecular structure of (I), showing 30% probability displacement ellipsoids and the atomic numbering.
solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $X P$ in SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors thank the Centre for Testing and Analysis, Cheng Du Branch Chinese Academy of Sciences, for analytical support.

References

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Fukuzumi, T., Tajiri, T., Tsukada, H. \& Yoshida, J. (1994). Jpn Patent JP 06298 919.

Jing, L.-H., Gu, S.-J. \& Zhang, H.-X. (2006). Acta Cryst. E62, o4268-o4269.
Jing, L.-H., Qin, D.-B., Gu, S.-J., Zhang, H.-X. \& Lei, G. (2006). Acta Cryst. C62, o561-o562.
Jing, L. H., Qin, D. B., Gu, S. J., Zhang, H. X. \& Mao, Z. H. (2006). Z. Kristallogr. New Cryst. Struct. 221, 200-202.
Rigaku. (2004). RAPID-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tsukada, H., Tajiri, T., Fukuzumi, T. \& Yoshida, J. (1994). Jpn Patent JP 06298 918.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

